Similarity invariants for pairs of upper triangular Toeplitz matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for Inverses of Triangular Toeplitz Matrices

This short note provides an improvement on a recent result of Vecchio on a norm bound for the inverse of a lower triangular Toeplitz matrix with nonnegative entries. A sharper asymptotic bound is obtained as well as a version for matrices of finite order. The results are shown to be nearly best possible under the given constraints. 1. Introduction. This paper provides an improvement on a recent...

متن کامل

Non-additive Lie centralizer of infinite strictly upper triangular matrices

‎Let $mathcal{F}$ be an field of zero characteristic and $N_{infty‎}(‎mathcal{F})$ be the algebra of infinite strictly upper triangular‎ ‎matrices with entries in $mathcal{F}$‎, ‎and $f:N_{infty}(mathcal{F}‎)rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $‎N_{infty }(mathcal{F})$; that is‎, ‎a map satisfying that $f([X,Y])=[f(X),Y]$‎ ‎for all $X,Yin N_{infty}(mathcal{F})...

متن کامل

cocharacters of upper triangular matrices

we survey some recent results on cocharacters of upper triangular matrices. in particular, we deal both with ordinary and graded cocharacter sequence; we list the principal combinatorial results; we show di erent tech-niques in order to solve similar problems.

متن کامل

Bernoulli, Ramanujan, Toeplitz and the triangular matrices

By using one of the definitions of the Bernoulli numbers, we prove that they solve particular odd and even lower triangular Toeplitz (l.t.T.) systems of equations. In a paper Ramanujan writes down a sparse lower triangular system solved by Bernoulli numbers; we observe that such system is equivalent to a sparse l.t.T. system. The attempt to obtain the sparse l.t.T. Ramanujan system from the l.t...

متن کامل

Scaling Bini’s Algorithm for Fast Inversion of Triangular Toeplitz Matrices∗

In this paper, motivated by Lin, Ching and Ng [Theoretical Computer Science, 315:511523 (2004)], a scaling version of Bini’s algorithm [SIAM J. Comput., 13:268-276 (1984)] for an approximate inversion of a triangular Toeplitz matrix is proposed. The scaling algorithm introduces a new scale parameter and is mathematically equivalent to the original Bini’s. Its computational cost is about two fas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1991

ISSN: 0024-3795

DOI: 10.1016/0024-3795(91)90227-n